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Abstract— Molecular data systems have the potential
to store information at dramatically higher density than
existing electronic media. Some of the first experimental
demonstrations of this idea have used DNA, but nature also
uses a wide diversity of smaller non-polymeric molecules to
preserve, process, and transmit information. In this paper,
we present a general framework for quantifying chemical
memory, which is not limited to polymers and extends
to mixtures of molecules of all types. We show that the
theoretical limit for molecular information is two orders
of magnitude denser by mass than DNA, although this
comes with different practical constraints on total capacity.
We experimentally demonstrate kilobyte-scale information
storage in mixtures of small synthetic molecules, and we
consider some of the new perspectives that will be neces-
sary to harness the information capacity available from the
vast non-genomic chemical space.

Index Terms— Molecular memory, nanobiotechnology,
DNA, small molecule, high density, information, data
storage.

I. INTRODUCTION

AN EVER-INCREASING worldwide demand for digital
data systems, alongside a looming slowdown of semi-

conductor technology scaling, has led to growing interest in
molecular-scale platforms for information storage and com-
puting. There have been several interesting demonstrations
using DNA sequences to store abstract digital data, offering
a path towards extremely dense archival information storage
[1], [2]. Using tools developed for modern genomics,
researchers have synthesized complex pools of oligomers
representing hundreds of megabytes of text, images, videos,
and other media files, and retrieved the data using commercial
high-throughput sequencing instruments [2]–[7].
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Other molecular information demonstrations have shown
that a molecule could serve as a secret input to a chemical
hash function [8], [9], and that two-dimensional arrays con-
taining single compounds per grid position can encode digital
data by photochemical or electrochemical means [10]–[12].
Researchers have also asked how other complex macromole-
cules, such as oligosaccharides [13], could be viewed through
the lens of information content. However, beyond exam-
ples describing polymers [3], [14], [15] or single molecules,
the information capacity of molecular systems can be less
intuitive. Given practical polymer synthesis constraints, can
many small molecules store as much information as one
macromolecule?

There are naturally two extremes of chemical information
representations, with a continuum of possibilities between
them. At one extreme, a single complex macromolecule can be
synthesized such that its substructures (monomers) represent
abstract data [14]. In the macromolecule regime, the challenge
lies in the reliability and precision needed to synthesize and
analyze such a large and complex molecule. At the other
extreme, data could be spread across many simpler com-
pounds, but here the challenge lies in precisely managing large
diverse collections of molecules.

Clearly mixtures of small molecules can represent and
transfer information, as biology demonstrates with RNA, neu-
rotransmitters, and metabolites. Unfortunately, tools do not
exist to quantify all of these types of information, hampering
efforts to leverage them in synthetic biology [16] and synthetic
data representations.

In this paper, we present a general theory of information
storage in molecules and in mixtures of molecules. This
theory includes ordered polymers, while providing a unified
description for other classes of molecules as well. This concept
of molecular information is applicable to many different
chemistries; the encoded data can be ‘read’ using a variety of
analysis techniques including mass spectrometry, sequencing,
chromatography, or spectroscopy, as illustrated in Figure 1.

By introducing a more generalized framework for quan-
tifying molecular information, we are optimistic that many
new classes of molecular storage media will be developed,
with valuable properties including even higher information
density than DNA, beyond-biological chemical properties,
and new dimensions for high speed chemical computing
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Fig. 1. Information is coded into a mixture of molecules from a pre-
determined library of possible chemicals. Reading a chemical memory
corresponds to classifying it as one of exactly Ω values. Depending on
the molecular library, any analysis technique which helps to differentiate
among mixtures can be used. The shapes of the analysis vectors will be
different from the shape of the data, but the number of possible states
(Ω) is finite, and will be the same at every stage.

paradigms. Although few chemistries are as mature as those
available for DNA, we show that diversified small-molecule
approaches have intrinsic capacities for gigabyte-scale data
storage. In addition to new experimental [17]–[20] and the-
oretical tools for interrogating heterogeneous mixtures of
molecules, this new perspective may also contribute to new
ways of quantifying the information contained in the chemical
states of living systems.

II. FOUNDATIONS OF MOLECULAR

INFORMATION CAPACITY

Information is a measure of improbability. If more potential
states are available to a given system, it becomes less likely
that one particular state will be realized. The information
capacity of a system accounts for the number of possible states
as well as the likelihood of confusing one state for another. If a
chemical system has � identifiable states, then its information
capacity (C , in bits) has an upper bound of

C ≤ log2 �. (1)

If we consider each molecule to be defined only by its
chemical identity, we can quantify the amount of information
represented in a chemical mixture by answering the following
simple questions: (1) What is the set of unique molecules
which could be present? (2) Which of these unique molecules
are present? (3) How many copies of each unique molecule
are present?

A. Ordered Polymers

To begin, consider linear polymers such as nucleic acids
or proteins. Nucleic acids have four canonical bases, so the
number of possible N-monomer strands is M = 4N . If only
one of the M molecules may be present, then � = M and the
identity of the molecule represents 2N bits. Similarly, proteins
with N monomers drawn from an alphabet of 20 amino acids
carry log2 20N ≈ 4.3N bits. The information capacity of a

single polymer molecule is therefore expressed as

C ≤ log2 M = N log2 B, (2)

where B is the number of different monomers. This result will
be familiar to many readers.

Although it is often true that information is mapped inde-
pendently onto substructures (monomers) within a molecule,
it is equally true to say that it is actually the identity of the
whole molecule which holds log2 M bits. (If one nucleotide
changes, it is an entirely different molecule!) This concept is
important for generalizing theories of information storage to
more diverse non-polymeric molecules.

B. Unordered Molecular Mixtures

Now, consider an unordered mixture of up to Q molecules.
If exactly Q molecules are drawn from a library of size M
(with potential duplication), then the total number of possible
combinations is

(M+Q−1
M−1

)
[21]. If between 0 and Q molecules

may be selected, then we have

� =
Q∑

q=0

(
M + q − 1

M − 1

)
= Q + 1

M

(
M + Q

M − 1

)
. (3)

The capacity of the system is therefore

C1(M, Q) ≤ log2

[
Q + 1

M

(
M + Q

M − 1

)]
. (4)

If we do not allow duplication among the Q selections, then

� =
Q∑

q=0

(
M

q

)
, (5)

so that the capacity is

C2(M, Q) ≤ log2

⎡
⎣ Q∑

q=0

(
M

q

)⎤
⎦ . (6)

When all molecules may be present (Q = M) without
duplication, this capacity becomes

C2(M, M) ≤ log2

⎡
⎣ M∑

q=0

(
M

q

)⎤
⎦ = M log2 2, (7)

which is simply M bits.
It is worthwhile to note that C1 is the larger of these capac-

ities and provides an upper bound on all memory schemes
in unordered mixtures. However, making use of C1 requires
that we know the exact concentration (count) of each unique
molecule. C2 is the reduced capacity when duplication carries
no information, which is also equivalent to classifying each
unique molecule as simply “absent” or “present” above some
concentration threshold. Representative curves are shown in
Figure 3. Without duplication, there are diminishing returns
in information capacity as Q approaches M .

In practical implementations of molecular memory, it is
likely that many copies of each unique molecule will be
present in a mixture. Rather than counting molecules, it may
be more reasonable to specify that each of the M molecules
may exist at one of L distinguishable concentrations. In this
case, the capacity becomes

C3(M, L) ≤ C2(M, M) × log2 L = M log2 L, (8)
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Fig. 2. Biological systems make use of both macromolecules and
small molecules for information representations. Whereas long-term
storage is encoded in ordered macromolecules (DNA), smaller and
more chemically-diverse proteins and metabolites also represent large
aggregate amounts of information that describe the working state of an
organism.

Fig. 3. Information capacity of a mixture as a function of the maximum
number of molecules present (Q), from a library of M molecules. If dupli-
cation carries no information, the capacity asymptotically approaches
C2 = M bits.

which reduces to Equation 7 when L = 2. Equation 8 also
applies when there are L potential states of each of the M
library molecules, which may include chemical modifications
or electronic, vibrational, or rotational states. Here writing a
chemical dataset maps to assigning one state to each molecule,
and reading the data means estimating the state of each
molecule. It is important to note that L is the number of states,
and each state may be described by a unique combination of
multiple properties. To reach this upper bound, each mole-
cule’s L states must be independent. If the states only describe
ensembles, the capacity multiplier will be less than log2 L.

III. MOLECULAR DATA ADDRESSING

In an unordered mixture, all combinations (states) are
equally valid, but there are practical advantages to re-
introducing some ordering and hierarchy that will correspond
to concepts of ‘addressing’ within the data. The choice of

Fig. 4. Mixture sparsity and DNA address-payload representations in
molecular datasets. By requiring that each mixture contains exactly one
molecule per address space, one can balance the benefits of smaller
data mixtures against a reduced total information capacity for a given
library.

chemical addressing scheme can have a large impact on the
information density, the total capacity, and possibilities for
random access.

A. Spatial Addressing

The most trivial form of addressing is spatial separation.
Storing information across a set of independent chemical pools
(such as in standard microwell plates) increases capacity lin-
early with the number of independent wells (W ). Importantly,
since wells are physically separated, the same library of M
potential molecules can be re-used in each well. In the limit
of very small Q, spatial addressing also describes existing
chemical microarrays [22], [23] or two-dimensional molecular
memory [10], [11].

B. Sparse Data Mixtures and Address-Payload Coding

Another valuable concept involves the subdivision of M
library molecules into groups of size S, and production of
sparse mixtures which contain exactly one molecule from each
subgroup. A mixture with sparsity S will thus contain M/S
molecules. Since each molecule represents an exclusive choice
among S possibilities, the total capacity is

C4(M, S) ≤ M

S
log2 S, (9)

which is less than both C1 and C2.
We note that the sparse mixture described by Equation (9) is

identical to an address-payload [24] DNA data representation,
as shown in Figure 4. By assigning A positions in the sequence
as an ‘address’ and the remaining N − A positions as a ‘pay-
load,’ the library of M = 4N sequences has been subdivided
using sparsity S = 4N−A , and exactly one sequence is included
from each of the 4A addresses. In DNA memory, this can
be a productive strategy given constraints on DNA synthesis
length [2], [3].

Enforced sparsity reduces the number of valid mixture
states (�), by disallowing mixtures which contain more than
one molecule from the same address space. The information
conveyed per molecule increases, but the overall mixture
capacity is reduced. Non-polymeric chemical memories may
similarly benefit from sparse representations, as increased
sparsity can imply synthesizing fewer molecules and analyzing
simpler mixtures.
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Fig. 5. Increasing mixture sparsity (S) produces mixtures with fewer
molecules, and confers more information per unique molecule present.
However, the maximum total capacity corresponds to the densest mix-
tures because the information per molecule scales only logarithmically
with the sparsity.

C. Capacity Implications

These mixture capacity analyses have some simple but
perhaps nonintuitive implications. As shown in Figure 5,
the maximum per-molecule information density occurs for
maximum sparsity (S = M), but the maximum total mixture
capacity is achieved with the minimum sparsity (S = 1).
In other words, for a fixed-size library, the maximum mixture
capacity is reached when each molecule represents only an
address, with no payload! In theory, a library consisting of
short DNA oligomers of length N = 40 could either be used
to select one molecule conveying 80 bits, or it could be used
to create one unordered molecular mixture which represents
151 zettabytes (151 × 1021 bytes) of data, which is on the
scale of all of the digital information produced in the entire
world per year (Figure 6) [1], [25]. If only single copies of
each molecule were present (or absent), this hypothetical data
set would weigh only a few pounds. Of course, in practice,
such experiments would be limited by chemical synthesis
throughput.

However impractical, this thought experiment underlines the
fact that while DNA length can sometimes be a real bottleneck
in certain biological applications [26], [27], mixtures of short
polymers would be more than capable of representing any
fathomable amount of digital data. To increase experimental
data capacity, those pursuing DNA data storage should focus
on increasing synthesis throughput (bases per second), rather
than length (bases per molecule) [28]. This perspective also
suggests that many other families of molecular libraries should
be compatible with gigabyte-scale information mixtures, even
when lacking the exponential library scaling of long polymers.

D. Energy Constraints of Molecular Memory

Any implementation of molecular memory will face con-
straints in both synthesizing the library and creating the
data mixtures. Given the tradeoffs between library size (M),
mixture size (Q), and number of independent mixtures (W ),
what would constitute an optimal design? It seems worthwhile
to consider the costs of representing the same information
in different configurations. For a mixture of polymers, if we
assume the marginal energy per monomer incorporation is ε,

Fig. 6. Information capacity of molecular mixtures. Plotting the capacity
for several different sparsities shows the potential of complex chemical
mixtures for large-scale data storage. The capacity of one molecule
scales logarithmically with the library size (M), but the capacity of a
mixture scales linearly.

then W mixtures of Q unique molecules with length N would
require a total energy of

E = εW QN. (10)

For W independent mixtures, we can rewrite Equation (9) as

C ≤ W Q log2
M

Q
= W Q

(
log2 M − log2

M

S

)
, (11)

from which we can see that for very sparse mixtures (including
single molecules), the second term is negligible. Substituting
M = B N , we can solve for the energy per bit (Eb)

Eb = E
C

≈ ε

log2 B
, (12)

which suggests that for very sparse mixtures of polymers, there
are energy benefits from increasing monomer diversity (B),
although the scaling is sublinear.

On the other hand, for dense binary mixtures (large Q)
which may contain many unique compounds, recall from
Equation (7) and Figure 3 that C ≈ M per well. In many
datasets, we can also approximate Q ≈ M/2. Thus,

Eb = E
C

≈ εN

2
, (13)

which implies that the optimal strategy is to produce mixtures
using the simplest molecules (smallest N) capable of yielding
mixtures with the desired capacity.

Across multiple dense mixtures one can see that there
will be many duplicated syntheses. If the entire library is
synthesized ahead of time, the synthesis cost will be amortized,
and the energy constraint may be better described by a physical
mixing or fluid handling cost (γ )

E = γ W Q ≈ γ W
M

2
= γ

C

2
(14)

and thus the energy per bit is a constant

Eb = E
C

≈ γ

2
, (15)

which unfortunately reveals no obvious opportunity for the
optimization of write costs for dense molecular mixtures.

To minimize the sizes of both the pre-synthesized library
and the array of mixtures, it may be reasonable to optimize
for min(M + W ) while maintaining C = MW . Geometrically
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this is a minimum perimeter problem, satisfied by

W ≈ M ≈ √
C, (16)

which is interesting in its implication that, for dense mixtures,
one optimum occurs when the data mixtures’ spatial diversity
and molecular diversity are similar.

IV. DIVERSIFIED SMALL-MOLECULE MEMORY

A simple summary of the preceding analysis is that a
library of M unique molecules can produce a binary mixture
representing as few as log2 M bits and as many as M bits
of information (Equation (7)). There are at least 105 known
biological metabolites [17], [29]), and far more synthetically
feasible small molecules.

Even among small organic molecules, there are potentially
more than 1060 unique compounds [30], and within this vast
space, there may be many potential targets for megabyte- and
gigabyte-scale small-molecule libraries.

Combinatorial chemistries are regularly used in pharma-
ceutical pipelines to explore the space of potential drug
candidates [31], [32]. One of the most scalable strategies for
generating functional group diversity is using multicomponent
reactions (MCRs) [33]. MCRs, which include the Hantzsch,
Biginelli, Passerini, and Ugi reactions, are chemical transfor-
mations in which three or more reactants combine, largely
independent of the order in which they are added, to form a
single, multicomponent product. Because there are hundreds to
thousands of different commercially-available possibilities for
each reactant, MCRs can generate extremely large libraries.
For example, recently reported five-dimensional Ugi-Petasis
reactions can theoretically span a chemical space of at least
1000 ×200 ×500 ×1000×1000 = 1014 molecules [34], [35].
Perhaps the largest small molecule library reported to date
was produced using a single split-pool synthesis and contained
more than two million different compounds [36]. Pharma-
ceutical companies routinely synthesize and screen millions
of compounds [32], and as of 2015, the digital repository
PubChem contained more than 60 million distinct chemical
structures [37].

In total, the number of unique compounds synthesized
worldwide to date is likely in the billions, yet this is still
only a small fraction of the theoretical chemical space [38].
Even when restricted to only 17 or fewer atoms, a recent
simulated enumeration of chemically stable and synthetically
feasible organic molecules predicted more than 166 billion
possible small organic molecules [39]. Some of the unrealized
molecules contain chiral centers and ring systems that remain a
challenge to produce using diversity-oriented techniques [32].
Yet even with these synthetic challenges, there remains ample
room for the design and discovery of new classes of molecules
for information systems [40].

One serious challenge with molecular memory in unex-
plored chemical spaces is that readout options are far less
mature than those for DNA. However, it is not necessary to
have a single unambiguous measurement of each molecule
present; the goal is only to recover the encoded information,
which can be designed to tolerate some chemical ambiguity
and errors.

Fig. 7. Experimental realization of information storage in small-molecule
mixtures. (a) The dataset is a 6,142-pixel binary image of a Nubian
ibex [41]. (b) The data was mapped onto mixtures of five small organic
compounds. (c) Chemical structures and masses of the five compounds.
(d) A mass spectrum of one of the mixtures, with vertical lines denoting
the masses corresponding to library compounds. This mixture represents
the five bits ‘10101.’ (e) A histogram of the measured sodiated peak
intensities for one of the compounds shows a clear separation between
the present (‘1’) and absent (‘0’) compounds. (f) These two distributions
were separated with Fisher’s linear discriminant, and the image was
reconstructed with an error rate of 4/6142 = 0.065�. (g) An image of
the 1229 data mixtures, spotted on a steel plate for analysis by mass
spectrometry (MS).

V. EXPERIMENTAL DEMONSTRATIONS

Depending on the chemical library, sequencing, mass spec-
trometry, optical spectroscopy, NMR, or chromatography may
all be leveraged to analyze molecular mixtures, and thereby
read the data. The detection signal space is typically larger
than the chemical mixture space, but the critical goal is
simply to uniquely identify each of the � potential mixtures,
as illustrated in Figure 1.

To explore physical implementations of these concepts,
we performed several experimental demonstrations. Digital
data was written into molecular mixtures using a program-
mable acoustic liquid handler (Labcyte Echo 550). Droplets
from chemical libraries were deposited onto steel plates at
2.25 mm pitch, with 1536 mixture spots per plate. To recover
the data, Fourier-transform ion cyclotron resonance (FT-ICR)
mass spectrometry was used to analyze and estimate the
chemical mixture in each spot (SolariX 7T, Bruker). These
experiments are based on those presented in [17], [19].

Figure 7 illustrates one example of writing and reading
a small digital image of an ibex from an Egyptian block
print [41]. A library of five small organic compounds (Fig. 7c)
was synthesized, and mixtures were assembled in which each
binary image pixel mapped onto the presence or absence of
one compound in one mixture (as described by Equation (7)).
To read back the data, the data was analyzed by mass
spectrometry and the presence of each of the five library
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Fig. 8. Experimental data storage in sparse molecular mixtures.
(a) Here, data was encoded using a library of 256 small molecules at
sparsity S = 16 across 1534 mixtures. Groups of four pixels are mapped
onto one-hot sequences of 16 compounds, such that each present
molecule represents 4 bits of information. (b) The data is analyzed with
mass spectrometry, and three example decoded blocks are shown with
compound #8 present (‘1000’). (c) Using this scheme, a 97,969 pixel
binary image was encoded depicting Amazonomachy from a piece of
Greek pottery [42]. (d) Reading back the data using MS, 136 out of
the 256 library compounds yielded <1% raw error. (e) After decoding,
the overall recovered image accuracy was 94.6�.

compounds was determined from the intensity of its primary
sodiated ion. (Looking for only one mass per library element.)
The digital image was recovered with 99.93% accuracy. In this
example, five bits of data are represented by each mixture,
which is the maximum information capacity for a five-element
library (M = 5). However, only one bit of data is encoded
per molecule, which is the minimum information for a five-
element mixture size (Q = 5). These correspond to S = 1 in
Figure 5.

As a second demonstration (Fig. 8), we experimentally
implemented a sparse encoding scheme (described by Equa-
tion (9) with S = 16) to encode an image of Amazonomachy
from a piece of Greek pottery [42]. A library of size M =
256 was subdivided into 16 blocks, and groups of 4 binary
pixels were mapped onto a one-hot selection of 1-from-
16 compounds to include in the mixture (Fig. 8a). To encode
the 97,969 bit image, 1534 mixtures were created, which each
contained 16 molecules and represented 16 × log2 16 = 64
bits/mixture. Thanks to the sparsity, each molecule present in
the data represents four bits of information (log2 S = 4).
However, the total information per data mixture is less than
the maximum for this 16-element library.

The Amazonomachy mixtures were similarly analyzed by
mass spectrometry. A regression predicted which compound
in each block was present with the highest signal-to-noise
ratio (Fig. 8b), using multiple masses per library element [17].
From this analysis, 136 out of the 256 compounds yielded
<1% raw presence/absence error (Fig. 8d). After decoding,
the recovered digital image was 94.6% accurate (Fig. 8e).

VI. DISCUSSION

By developing a formal theory of the information capacity
of mixtures of molecules, we have shown how information can
be represented by any chemical library. Regardless of the types

of molecules, the identities and concentrations of molecules
within a mixture can serve as atomic-scale representations
of abstract digital data. We have demonstrated these ideas
experimentally using several families of small molecules,
including the demonstrations in Figure 7 and Figure 8, as well
as other datasets using phenols [18], metabolites [17], and
multi-component reaction products [19]. These experiments
have significant room for growth, using error correcting codes
and expanded chemical libraries.

Although it is easier to conceptualize information storage
within a single polymer, this perspective reminds us that
single-molecule complexity and mixture complexity are com-
plementary dimensions. The sparsity of a mixture relative to
the available library size allows us to quantify the compromise
between the challenges of both extremes. In scenarios when
it is feasible to synthesize every compound from the library,
denser mixtures provide higher total information capacity,
even when the constituent molecules are polymers themselves.
Writing data with pre-synthesized libraries will often have
faster write speeds, especially for smaller datasets. Read times
tend to relate as much to the performance of available instru-
mentation as to the data size, but there are opportunities for co-
optimization of molecular encoding and readout speed. These
trends hold true for both DNA and non-genomic molecular
storage systems.

Demonstrations of DNA data storage have exceeded
200 megabytes [3], but although this stretches today’s synthe-
sis capabilities, it represents a tiny fraction of the potential of
molecular data storage. Organick et al. synthesized 3.2 million
unique ≈ 110-nt sequences; this is a mixture with a spar-
sity (S) of only one out of every ≈ 1059 molecules from
the library. As technologies for higher throughput synthesis
evolve [28], [43], even if they are accompanied by higher error
rates, DNA memory still has tremendous room for growth.

In non-genomic chemical space, working within the
assumptions that led to an estimate of 1060 drug-like small
molecules [30], the selection of one 500 Da molecule could
represent as much as log21060 ≈ 200 bits. To represent the
same amount of information in DNA would require a molecule
with a mass of 65,000 Da. Despite the practical limitations of
this comparison, we can recognize opportunities for chemical
information systems with up to two orders of magnitude lower
mass than DNA, and with far greater chemical diversity.

All of the information capacity expressions derived here
have been upper bounds, which are only achievable if there
are no errors. The lifetime, volatility, and error profiles of
new molecular libraries may be more variable than DNA,
and the increased diversity of new small-molecule chemical
spaces will make strategic use of error correcting codes (ECC)
particularly important, similar to successful DNA information
systems [3], [6], [44].

Modern information technology is moving towards a more
unified vision of computation and memory, and fluid molecular
mixtures offer an intriguing space for future generations of
computing systems that take advantage of the natural complex-
ity and intrinsic statistics of chemical systems [18], [45]–[49].
More precisely quantifying the information capacity of chem-
ical mixtures represents an early step in this direction, and
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we anticipate that valuable scientific advances may come
from using this lens to consider pathways within mixtures of
reactive chemical libraries.
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